Robotics and Artificial Intelligence are revolutionizing key sectors such as industry, healthcare, agriculture, and transportation. These technologies not only automate complex tasks but also enable intelligent data processing and problem-solving. Fully leveraging their potential requires an interdisciplinary approach that bridges computer science, engineering, and the humanities.
RobIA’2025, organized by the LAIG Laboratory (Laboratoire d'Automatique et Informatique Guelma), aims to serve as a leading platform for fostering such collaboration and innovation. The school will explore a wide range of cutting- edge topics, from fundamental algorithms in machine learning and advances in AI and deep learning, to emerging capabilities in imaging and 3D vision. Participants will also engage with developments in autonomous robotics, including systems focused on intelligent perception, as well as collaborative robotics that facilitate human-machine interaction. In addition, the program will highlight novel approaches in micro-robotics and bio-inspired design, illustrating the convergence of biological principles with robotic engineering.
The event will feature a rich combination of activities: hands-on workshops addressing real- world problems, plenary sessions that tackle both theoretical frameworks and applied research, and a dedicated doctoral symposium—organized by the GAST team (France)—designed to empower early-career researchers. This immersive environment will offer participants a unique opportunity to share ideas, receive feedback from leading experts, and strengthen their academic and professional networks on an international scale.
July 15th, 2025| August 31st, 2025
September 1th, 2025
September 6th, 2025
October 6th –9th, 2025
Sorbonne University of Abu Dhabi
abdenour.hadid@ieee.org
Title: Artificial Intelligence: Advances, Applications and Challenges
Abdenour Hadid received his Doctor of Science in Technology degree in electrical and information engineering from the University of Oulu, Finland, in 2005. Now, he is a Professor and PI of a CHAIR on Artificial Intelligence at Sorbonne University of Abu Dhabi. His research interests include physics-informed machine learning, forecasting, computer vision, deep learning, artificial intelligence, internet of things and personalized healthcare. He has authored more than 400 papers in international conferences and journals, and served as a reviewer for many international conferences and journals.
His research works have been well referenced by the research community with more than 29,000+ citations and an H-Index of 60. Prof. Hadid is currently a senior member of IEEE. He was the recipient of the prestigious “Jan Koenderink Prize” for fundamental contributions in computer vision. He participated and played a key role in different European projects. One of these projects has been selected as a Success Story by the European Commission.
His achievements have also been recognized by many awards including the highly competitive Academy Research Fellow position from the Academy of Finland during 2013–2018, and a very prestigious international award within the 100-Talent Program (Outstanding Visiting Professor) of Shaanxi Province, China.
We are living in the era of big data. Data is everywhere and is continuously recorded and stored in our ordinary life. The key element for using such an immense body of data to benefit the society is through Artificial Intelligence (AI). Artificial intelligence has dramatically transformed our society by showing impressive results across a large spectrum of applications ranging from biology, medicine, education, geoscience, legislation, and finance. Despite the impressive performances, AI models are closely tied to the quantity/quality of the training data (garbage in and garbage out). Also, from the trustworthiness and fairness viewpoints, some serious concerns have been raised about the potential emergence of ‘super- intelligent machines’ without adequate safeguards. Moreover, AI models usually require a large amount of high-quality, unbiased data to operate. Other equally important issues include the massive computing power that is needed to train AI models. This presentation discusses some examples and challenges related to the use of AI in healthcare, security, autonomous driving, geoscience etc.
EPITA, Paris France
nida.meddouri@epita.fr
Title: Améliorer les performances de l'apprentissage supervisé par des techniques d'ensemble (Boosting/Bagging)
Nida Meddouri est enseignant-chercheur à l’École Pour l’Informatique et les Techniques Avancées (EPITA), au sein du Laboratoire de Recherche en Informatique (LRE), où il coordonne le parcours recherche du cycle d’ingénieurs en apprentissage ainsi que les projets de recherche en cybersécurité. Il est également chercheur associé au laboratoire GREYC (CNRS UMR 6072) de l’Université de Caen Normandie. Titulaire d’un doctorat en informatique obtenu en 2015 à l’Université Tunis El Manar, ses travaux de recherche portent sur l’apprentissage automatique, l’analyse de concepts formels, la classification supervisée, l’intelligence artificielle explicable, ainsi que l’analyse de données temporelles et spatiales. Il est l’auteur de nombreuses publications scientifiques dans des revues et conférences internationales à comité de lecture, et a co-encadré plusieurs thèses de doctorat en cotutelle et en codirection. Son parcours académique est marqué par une solide expérience pédagogique, acquise dans dix établissements d’enseignement supérieur répartis entre la France, la Tunisie et l’Arabie Saoudite. Engagé activement dans la communauté scientifique internationale, Nida Meddouri est co-responsable du groupe de travail GAST (Gestion et Analyse de données Spatiales et Temporelles), dans le cadre duquel il a contribué à l’organisation de plusieurs ateliers et journées thématiques. Il siège également dans les comités de programme de conférences majeures telles que ECML PKDD, ICDM ou encore ECAI. Il participe à des projets de recherche collaboratifs et œuvre à la diffusion des connaissances à travers l’organisation de colloques, la production de contenus pédagogiques numériques, ainsi que le développement de modules logiciels pour des plateformes du Data Maining. Membre de plusieurs associations scientifiques francophones et internationales, il intervient régulièrement dans des séminaires de recherche en France et à l’étranger. Trilingue (français, anglais, arabe), il incarne une approche rigoureuse, interdisciplinaire et engagée de la recherche et de l’enseignement en informatique.
Améliorer les performances de l'apprentissage supervisé par des techniques d'ensemble (Boosting/Bagging)
De nombreux travaux en apprentissage supervisé se sont consacrés à l’étude des méthodes d’ensemble, dont l’objectif est d’accroître la performance des classifieurs en combinant leurs prédictions. Ces approches reposent essentiellement sur deux paradigmes : l’apprentissage séquentiel, illustré notamment par le Boosting, et l’apprentissage parallèle, tel que le Bagging. Les analyses comparatives disponibles dans la littérature mettent en évidence l’efficacité de ces stratégies, en particulier dans le traitement de problèmes réels présentant une grande complexité, permettant ainsi une amélioration substantielle des performances des ensembles de classifieurs. Ces techniques se sont développées à l’interface entre l’apprentissage automatique et la statistique, tirant parti des avancées conceptuelles et algorithmiques issues de ces deux domaines. Deux grandes catégories d’algorithmes se distinguent : d’une part, ceux fondés sur le Boosting, qui reposent sur une construction adaptative (qu’elle soit déterministe ou aléatoire) d’un ensemble de classifieurs ; d’autre part, ceux reposant sur le Bagging, caractérisés par une génération aléatoire d’un ensemble de modèles de base. Dans le cadre de cette étude, nous nous proposons de mettre en exergue les apports respectifs de ces deux paradigmes, en examinant de quelle manière ils permettent d’améliorer les performances d’un classifieur initialement considéré comme faible, en l’occurrence un classifieur fondé sur l’Analyse de Concepts Formels.
University of Guelma,Algeria
tebbikh.hicham@univ-guelma.dz
Title: Les systèmes de contrôle distribués et les 3C de la robotique.
Professor at the University of Guelma and served as the Director of the Laboratory of Automation and Computer Science of Guelma (LAIG) until 2016.
Graduating as an Electronics Engineer from the University of Annaba in 1984, he pursued postgraduate studies (DEA and Ph.D.) in automation and signal processing at the National Polytechnic Institute of Grenoble (INP Grenoble), France. His research, conducted at the Grenoble Automation Laboratory, focused on satellite attitude control during his DEA and on the structure and control of nonlinear systems for his doctoral studies.
Throughout his career, he has led numerous national and international research projects in areas such as:
• Modeling and control of fractional-order systems
• Modeling and control of hybrid dynamic systems
• Automatic pattern recognition, particularly facial recognition
He has also contributed as a member of several national scientific and technological committees, including the Central Commission for New Information and Communication Technologies of the Ministry of Higher Education and Scientific Research (MHESR) since 2002, and the MHESR Standing Sector Committee (SSC) from 2009 to 2012.
La robotique, dont l’histoire a débuté dans l’Antiquité, s’est structurée au XXe siècle avec l’apparition du terme « robot » en 1921 et le développement du premier robot industriel dans les années 1950. Grâce aux progrès en électronique, informatique et intelligence artificielle, la robotique s’est diversifiée et modernisée, touchant de nombreux domaines. Aujourd’hui, les robots sont des systèmes distribués complexes, composés de multiples éléments interconnectés qui échangent des informations et agissent de manière coordonnée. Leur organisation repose sur trois principes fondamentaux, appelés les 3C : Communications (échanges d’informations en particulier entre composants), Commandement (prise de décisions par le contrôleur central) et Contrôle (conversion des signaux en actions physiques). Ces principes assurent la coordination, l’efficacité, la fiabilité et la réactivité des robots modernes, en particulier dans des environnements complexes ou évolutifs. L’intelligence artificielle (IA) a profondément transformé la robotique, rendant les machines, dans de nombreux domaines, plus autonomes et intelligentes. - En industrie, elle permet aux robots d’effectuer des tâches complexes et d’apprendre de nouvelles fonctions. - Les robots de service interagissent avec les humains pour fournir de l’aide dans des secteurs comme la vente ou l’hôtellerie. - En médecine, l’IA améliore la précision des robots chirurgicaux et aide à la rééducation des patients. - Dans l’agriculture, elle optimise la gestion des cultures et réduit l’impact environnemental. - Pour l’exploration spatiale, l’IA rend les robots capables de s’adapter à des environnements hostiles. - Enfin, les véhicules autonomes utilisent l’IA pour naviguer et prendre des décisions en temps réel. Nous constatons que chaque secteur a des besoins spécifiques ce qui fait que l’ordre de priorité des 3C peut varier selon les domaines d’application : - Le contrôle est souvent prioritaire dans les domaines où la sécurité et la précision sont essentielles (industrie, médical, véhicules autonomes). - La communication domine dans les applications nécessitant des interactions humaines ou une coordination à distance (robots de service, exploration spatiale ou militaire). - Le commandement est central dans les environnements nécessitant une planification et une organisation complexes (agriculture, industrie). Dans cette conférence, nous allons développer ces aspects avec des exemples précis sur des applications spécifiques.
University Sherbrooke,Canada
Djemel.Ziou@USherbrooke.ca
Title1: Everyone Knows the mean, But...
Title2: Vision 3D
Djemel Ziou est un chercheur algérien de renom, professeur titulaire au Département d’informatique de l’Université de Sherbrooke (Canada). Titulaire d’un doctorat en informatique de l’INPL (France), il est spécialiste en vision par ordinateur, traitement d’image, intelligence artificielle et cybersécurité. Il a dirigé plusieurs projets de recherche majeurs, fondé des laboratoires comme MOIVRE et le consortium CoRIMedia, et supervisé de nombreux étudiants. Auteur de plus de 450 publications scientifiques avec un fort impact international, il est reconnu pour ses contributions à la recherche visuelle, la reconnaissance d’objets et les technologies numériques avancées.
Title1:Everyone Knows the mean, But...
For over 5,000 years, the concept of the mean has been applied across a wide
range of fields, from mathematics to agriculture. While it plays an essential role in guiding our
decisions, the mean often oversimplifies complex realities, sometimes making it the subject
of humor. This presentation aims to deepen our understanding of the mean and explore ways
it can be used to offer a more nuanced perspective on our data.
Title2: Vision 3D
Cette présentation aborde l’intérêt de la vision 3D pour la reconstruction de la forme et de la profondeur à partir d’images 2D. Les bases de la géométrie projective et épipolaire, essentielles pour relier les points entre deux vues, seront expliquées. Les principales approches de vision 3D seront présentées, dont la stéréovision, illustrée par un exemple concret.
Polytechnic University of Hauts de France
abdelmalik.taleb-ahmed@uphf.fr
Title: Génération et Détection de Contenu Synthétique
Pr. TALEB-AHMED Abdelmalik received in 1992 PhD in electronics and microelectronics from Université des Sciences et Technologies de Lille 1. He was associate professor in Calais until 2004. He joined the Université Polytechnique des Hauts de France in 2004, where he is presently Full Professor. His research focused on computer vision and artificial intelligence and machine vision.
His research interests include segmentation, classification, data fusion, pattern recognition, computer vision, and machine learning, with applications in biometrics, video surveillance, autonomous driving, and medical imaging. He has (co-)authored over 225 peer-reviewed papers and (co-)supervised 20 graduate students in these areas of research.
It is becoming quite easy to generate realistic images and videos especially using diffusion-like models (e.g. DALL-E, GLIDE, Midjourney, Imagen, VideoPoet, Sora, Genie, etc.) due to their impressive generative capabilities. This creates a huge potential for a wide range of applications such as image editing, video production, content creation and digital marketing. Moreover, synthetically generated images and videos can be very useful for enhancing the training of AI models which usually require a large amount of data. However, these advances have also raised concerns about the potential misuse of these images and videos, including the creation of misleading content such as fake news and propaganda. So, one of the critical challenges associated with these advancements is the development of effective detection methods of synthetic images and videos. In the talk, we present the advances in automatically generating and editing images and videos, and discuss the limitations and challenges of such AI generated content.
Centre for Aeronautics at Cranfield University,United Kingdom
j.f.whidborne@cranfield.ac.uk
Title: Control of Multirotor Aerial Robots in Gusty Conditions
James Whidborne is Professor in Control Systems and the Head of the Dynamics, Simulation and Control (DSC) research group in the Centre for Aeronautics at Cranfield University, United Kingdom. He received his bachelors from Cambridge University and his masters and doctorate from the University of Manchester. Following a post-doctoral position at Leicester University he spent 10 years at Kings College London, moving to Cranfield in 2004.
He has published over 250 fully refereed papers, and has authored or edited three research monographs mostly in the area of advanced control. His research interests include flight control, control of UAVs, flow control, robust multi-objective control design as well as control problems in automated oil drilling.
TITLE: Control of Multirotor Aerial Robots in Gusty Conditions
Due to their mechanical simplicity, multirotor air vehicles are being increasingly used for numerous applications in aerial robotics and aviation. However, the aircraft require feedback for stable flight, hence there are many interesting control problems that require solutions. This presentation will consider several of these, in particular the problem of operating in gusty conditions. The flight dynamics and control is explored by analysis of a planar birotor aircraft, in particular, the effect of rotor tilt on the stability and zero-location.
ENSIA,Algiers Algeria
mohamed.brahimi@ensia.edu.dz
Title: Fundamentals of Deep Learning (by NVIDIA DLI)
Researcher in Machine Learning, I am interested in ML applications in Agriculture, Chemistry and Engineering. I am a lecturer at the School of Artificial Intelligence in Algiers. I was certified for several Nvidia workshops, which allowed me to train more than 300 participants and certified more than 150 of them. I am very interested recently in how to implement machine learning and deep learning projects in production.
I'm interested in machine learning theory and its application in real life (Agriculture, Chemistry, Engineering...). Recently, I have worked in deep learning and especially convolutional neural networks (CNN) for computer vision. For example, I have applied CNN for plant disease classification and human action recognition. But, I don't limit myself to these applications, and I can apply CNN in any domain. I'm working on the interpretation of CNN results using visualization methods to make it more useful in many critical applications.
This training provides a practical and accessible introduction to deep learning through real-
world applications in computer vision and natural language processing. Participants will gain
hands-on experience in training neural networks, improving model accuracy with data
augmentation, and using transfer learning to reduce development time and data needs.
Key skills developed include:
- Training deep learning models using modern frameworks like TensorFlow and Keras
- Enhancing datasets for better generalization
- Applying pre-trained models and recurrent neural networks
- Building and optimizing models for tasks such as image classification and text
completion
Participants are expected to have basic knowledge of Python (functions, loops, arrays, etc.).
All required tools and cloud-based GPU resources are provided. The training includes coding
assessments, and a certificate is awarded upon successful completion.
The course is ideal for individuals looking to start or strengthen their journey in deep learning
with guidance from NVIDIA’s industry-driven content.
ENSIA, Algiers Algeria
sami.belkacem@ensia.edu.dz
Title: Machine Learning Basics Training
Sami Belkacem is a PhD in Computer Science from the University of Sciences and Technology Houari Boumediene (USTHB) and currently a member of the Computer Systems Laboratory. He received a Bachelor's degree in Computer Science in 2013, a Master’s degree in Artificial Intelligence in 2015, and a PhD in Artificial Intelligence in 2021 from USTHB University. Sami has completed two doctoral internships: University of Algarve (Portugal) and University of Lyon 2 (France).
He has published several papers in international conferences, workshops, and journals. Research Interests: Social Network Analysis and Mining, Recommender systems, Machine Learning
This training offers a comprehensive introduction to essential machine learning techniques
and tools. Participants will learn how to prepare and analyze data, identify meaningful
patterns, and apply feature engineering to enhance model performance.
The program also covers key machine learning methods, including classification, regression,
and clustering. Attendees will gain practical experience in selecting models, training them,
tuning hyperparameters, and evaluating results using performance metrics such as accuracy,
precision, and recall.
The training is designed for individuals with a basic background in Python programming,
mathematics, and data structures. It makes use of widely adopted tools and platforms such as
Python 3, Anaconda, Jupyter Notebook, and Google Colab. Core libraries include NumPy,
Pandas, Matplotlib, Seaborn, and Scikit-learn.
Huawei's Finland R&D Centre Finland
Zighem25@gmail.com
Title: Diffusion Models: Architectures, Applications, and Challenges.
Dr. Mohammed En Nadhir Zighem is a senior researcher at Huawei's Finland R&D Centre, where he focuses on visual content generation, including image and video synthesis, using deep learning and generative models. He earned his Ph.D. through a joint program between Université Mohamed Khider Biskra in Algeria and Université Polytechnique Hauts-de-France (UPHF) in France. His research interests include facial analysis, biometric security, age and gender estimation, and anti-spoofing techniques.
Dr. Zighem’s expertise spans neural networks, image segmentation, and feature extraction, and he actively collaborates with international research teams. He published several research papers and patents in the field of machine learning.
This talk explores diffusion models, a class of generative models that have rapidly advanced the field of AI (Artificial Intelligence) through their ability to synthesize high- quality data, particularly in image and video generation. We will begin by examining the core architectures behind these models, including denoising diffusion probabilistic models (DDPMs) and their variants, highlighting how they leverage iterative noise removal to generate data from pure noise. The session will then survey key applications across domains especially in text-to-image synthesis, demonstrating their transformative potential. Finally, we will address current challenges, including computational cost, sampling speed, and the difficulty of controlling outputs, while discussing ongoing research directions aimed at overcoming these limitations.
Military Polytechnic School
belloula@gmail.com
Title: Microcontrôleurs et IA distribuée : vers l’autonomie des robots mobiles
Abdelmalek BELLOULA est diplômé de l’École Militaire Polytechnique, titulaire d’un diplôme d’ingénieur d’État en automatique et d’un magistère en robotique, automatique et informatique industrielle. Fort de plus de 30 années d’expérience, son parcours s’est articulé autour de la recherche scientifique, de l’enseignement universitaire et du développement technique, avec une expertise avérée dans la conception et l’intégration de systèmes complexes. Ses domaines de spécialisation incluent l’électronique, les systèmes embarqués temps réel, l’IoT, l’automatique et la robotique. Il a occupé des postes stratégiques au sein du Ministère de la Défense et a travaillé pour des entreprises de référence telles que Cevital et HB-Technologies. Très orienté vers l’innovation, il se consacre aujourd’hui à l’ingénierie des systèmes embarqués intelligents, avec un intérêt particulier pour les architectures distribuées, la robotique mobile et les applications temps réel.
Title:Microcontrôleurs et IA distribuée : vers l’autonomie des robots mobiles
L’évolution spectaculaire des microcontrôleurs, alliant une puissance de calcul sans
cesse croissante à une réduction drastique des coûts, stimule l’adoption d’architectures
distribuées dans les applications embarquées, et tout particulièrement en robotique mobile.
En intégrant désormais des périphériques matériels spécialisés (DMA, accélérateurs dédiés,
Tmers avancés, bus CAN/CANFD…), ces puces peuvent exécuter localement des tâches
critiques sans solliciter le cœur de processeur, renforçant ainsi la réactivité et l’efficacité
énergétique du système.
La délégation des fonctions de bas niveau — acquisition de données, pilotage des
moteurs, gestion temps réel des communications — à des nœuds spécialisés libère
d’importantes ressources CPU. Cellesci peuvent alors être consacrées à des algorithmes
d’intelligence artificielle embarquée. L’IA n’est plus un simple atout, mais un besoin
stratégique pour doter les robots mobiles d’une véritable autonomie décisionnelle, leur
permettant d’analyser leur environnement, de réagir instantanément et de s’adapter à des
situations complexes.
Cette présentation dressera un état de l’art des évolutions technologiques des
microcontrôleurs, avec un focus particulier sur les architectures ARM, largement adoptées
pour le contrôlecommande grâce à leur rendement énergétique, leur écosystème logiciel et
leur intégration native des protocoles industriels.
Pour l’atelier :
Optimisation des ressources dans un réseau de contrôleurs distribués CAN/CANFD
Application : commande d’un robot mobile 4 roues motrices.
Objectif de l’atelier :
- Initiation au réseau et bus de terrain : réseau CAN/CANFD opérationnel
- Initiation pratique à la mise en œuvre d’un bus CANFD
- Pilotage temps réel sur un réseau CAN :
* Envoi et réception de trames de consigne de vitesse
* Synchronisation des commandes entre les nœuds pour assurer une traction
coordonnée.
* Lecture des vitesses
- Optimisation CPU et décharge des cœurs de calcul
* Délégation des tâches basniveaux (PWM, mesure de vitesse via encodeur)
aux périphériques matériels (DMA, timers).
* Mesure comparative de l’occupation CPU avant/après décharge : réduction
d’au moins 40 % du temps processeur consacré aux I/O
EPITA, Paris France
reda.dehak@epita.fr
Title: Self Supervised Learning for Speaker Recognition (Apprentissage autosupervisé pour la reconnaissance du Locuteur)
Réda Dehak received his Ph.D. degree in signal and image processing from École Nationale Supérieure des Télécommunication in 2002, his M.S. degree in Signal, Image and Speech processing in 1998 from Institut National des Sciences Appliquées (INSA), Lyon, France, and an Engineer degree in Computer Science in 1997 from Université des Sciences et de la Technologie d'Oran, Algeria. He is an assistant professor of computer science and a member of the EPITA Research Laboratory (LRE-EPITA). His research interests include machine learning approaches applied to speech and audio processing, speaker recognition, and language recognition.
Self-Supervised Learning for Speaker recognitionAlthough supervised deep learning has greatly advanced audio speech processing, it relies heavily on annotated data, which limits its scalability and generalisation. Self-supervised learning (SSL) addresses this issue by leveraging unlabelled data and has been extensively studied in the context of computer vision and automatic speech recognition (ASR). However, its application to speaker recognition (SR) is still emerging. This presentation reviews key SSL frameworks from computer vision and their adaptation to SR. It examines existing SSL methods for SR and provides a thorough analysis of their components, hyperparameters, and performance. It also highlights recent developments and current challenges in the field.
IMT Atlantique France
samir.loudni@imt-atlantique.fr
Title: Constraint Programming for Pattern (Set) Mining
Samir Loudni is a Professor in Data and Decision Sciences at IMT Atlantique since 2020 and has been the Head of the TASC team (UMR CNRS LS2N) since 2022. His research focuses on Constraint Programming, Data Mining, Preference Learning, and Constraint Optimization, where he has made significant contributions. He has developed innovative methods for solving complex combinatorial problems, notably by integrating Variable Neighbourhood Search (VNS) with constraint programming to enhance optimization processes. His work also includes pioneering approaches in declarative pattern discovery, leveraging constraint programming to efficiently extracting patterns, pattern sets, and skypaterns in transactional databases, thus advancing knowledge extraction techniques from large datasets. Additionally, he has contributed to the development of constraint-based languages for pattern discovery, enabling more expressive and flexible data mining processes.
Data mining is at the core of the Knowledge Discovery in Databases (KDD) process. It involves multiple challenges such as designing efficient tools for handling large datasets and extracting patterns relevant to user interests. So, the heart of the mining process is the discovery of regularities and interesting phenomena in the data that are both informative and easy to interpret. Pattern mining methods are a central class of techniques in this context, where a pattern is generally understood as a recurring structure within the data. Constraints are commonly used to define the types of patterns to extract, thereby guiding the mining process toward the user’s specific interests. Despite its success, integrating data mining techniques into practical applications remains difficult. This is largely due to the predominance of specialized algorithms over general, reusable frameworks. Constraint Programming (CP) offers a powerful and flexible paradigm for modelling and solving combinatorial problems, including those arising in pattern mining. Since 2008, CP has gained traction in this domain by enabling users to declaratively specify mining tasks. One of its key strengths is that it allows users to define the problem in terms of constraints, while the solver is responsible for efficiently computing the complete set of solutions. This lecture aims to showcase how declarative approaches based on CP can be effectively employed to address complex pattern mining tasks. We will survey recent advances in applying CP to a range of well-known data mining problems, including frequent closed pattern mining, diverse pattern discovery, Pareto-optimal patterns, association rule mining, and more.
University of Western Brittany France
clement.iphar@univ-brest.fr
Title: Cas applicatifs de l'Intelligence Artificielle dans le cadre des réseaux du transport maritime
Ingénieur-diplômé en sciences de l’information géographique, et docteur en science des données de MINES Paris – PSL, Clément Iphar mène des recherches à l’intersection de l’analyse des données de mobilité, de la géovisualisation, et de l’évaluation des usages et des risques liés au transport maritime. Ses travaux actuels portent, entre autres, sur la détection d’escales portuaires à partir des données AIS, et la cartographie floue des pratiques de pêche lagonaire en Polynésie française. Il est actuellement chercheur contractuel à l’Université de Bretagne Occidentale, à Brest.
Title: Cas applicatifs de l'Intelligence Artificielle dans le cadre des réseaux du transport maritime
Dans cette intervention, nous explorons l'application de l'intelligence artificielle à l'analyse des
réseaux de transport maritime, en s'appuyant avant tout sur la donnée maritime massive permise
par le développement du système AIS (Automatic Identification System) et son exploitation. Nous
abordons les spécificités du réseau maritime, sa structure dynamique, les obstacles qui en affectent
l’organisation (naturels, réglementaires, économiques) et les moyens de les modéliser. Côté
méthodologique, nous mobilisons à la fois des approches déterministes classiques (basées sur des
ontologies ou des règles logiques) et des méthodes statistiques plus récentes d’apprentissage. Ces
outils permettent d’identifier les routes maritimes, de prédire les comportements des navires et de
quantifier et qualifier les escales portuaires, dans une perspective d’optimisation des flux, de
compréhension fine des trajectoires, de détermination de l’intégrité de la donnée et d’amélioration
de la gestion des réseaux maritimes.
University of Strasbourg France
aurelie.leborgne@unistra.fr
Title: Représentation des données spatio-temporelles via des graphes
Les graphes sémantiques sont une méthode de représentation des données qui permettent de visualiser les relations entre les entités. Les modèles de graphes spatio-temporels sont une extension de cette méthode, qui permettent de représenter les relations spatiales et temporelles entre les entités. Cela permet une modélisation plus fine et plus complète des données dans des domaines où la position et le temps sont des facteurs clés. Plusieurs exemples d'utilisation de modèles de graphes spatio-temporels seront présentés. Un exemple sera dans le domaine médical avec l'IRM fonctionnel, où les graphes spatio-temporels sont utilisés pour représenter les connexions fonctionnelles entre les différentes régions du cerveau au fil du temps. Un autre exemple sera dans le domaine environnemental avec l'occupation des sols, où les graphes spatio-temporels sont utilisés pour représenter les relations spatiales et temporelles entre les différents types d'occupation des sols au fil du temps.
University of New Caledonia France
loic.salmon@unc.nc
Title: Analyse de données maritimes pour la détection d’anomalies et le suivi de dynamiques spatio-temporelles
Loic SALMON a réalisé sa thèse intitulée « Une approche holistique combinant flux temps-réel et données archivées pour la gestion et le traitement d’objets mobiles : application au trafic maritime » à l’École navale sur des problématiques de gros volumes de données et de gestion temps-réel. Durant ses différents postes il a également travaillé sur des aspects génie logiciel pour un simulateur de drone sous-marin et il s’est intéressé au traitement de données de déchets plastiques en mer pour le suivi de la pollution environnementale en mer et le ramassage de ces déchets. Maître de conférences en informatique à l'Université de la Nouvelle-Calédonie ses travaux de recherche concernent à présent l'intelligence artificielle et plus spécifiquement les GNN (Graph Neural Network).
La croissance des capteurs et des flux de données a profondément transformé l’analyse des mobilités. Les travaux présentés donneront l’idée d’une approche hybride pour le traitement combiné de données en temps réel et archivées, appliquée aux trajectoires de navires. L’objectif est de mieux modéliser leur évolution spatio-temporelle, d’identifier des comportements types et d’améliorer la capacité prédictive. Un paradigme d’événements est proposé pour détecter des motifs récurrents, et des expérimentations sur des zones de couverture maritime confirment l’intérêt d’un traitement hybride pour l’analyse de trajectoires.
University of New Caledonia France
nazha.selmaoui@unc.nc
Title:IA au service de l'environnement et la santé
Nazha Selmaoui-Folcher est professeure des universités en informatique à l’Université de Nouvelle-Calédonie et data scientist. Spécialisée en analyse d’images et fouille de données spatio-temporelles, elle a coordonné le projet ANR FOSTER sur l’érosion des sols et contribué à plusieurs projets en santé et environnement, dont SpiRAL (leptospirose) et AGING (moustiques Aedes aegypti). Ses recherches portent sur l’intelligence artificielle, l’apprentissage automatique, l’analyse de séries d’images satellites et l’exploration de graphes. Elle est active dans de nombreux comités scientifiques internationaux et au sein du Conseil National des Universités et de l’ANR.
Will Be Added Soon...
INSA, Polytechnic University of Hauts-de-France
Smail.Niar@uphf.fr
Title: Hardware Supports for ML From Artificial Neural Network to Generative AI
Prof. Smail Niar, INSA Hauts-de-France/Université Polytechnique Hauts-de- France (UPHF) & CNRS, received his PhD in computer Engineering from the University of Lille (France) in 1990. Since then, he has been professor at UPHF where he is member of the computer science department at the “Laboratory of Automation, Mechanical and Computer Engineering”, a joint research unit between CNRS and UPHF. His research interests are AI/ML-based embedded systems, autonomous driving, HPC, and edge computing.
Deep learning (DL) models are being deployed to solve various computer vision
and natural language processing tasks at the edge. Integrating NN on edge devices
for IoT systems enables more efficient and responsive solutions, ushering in a new
age of self-sustaining Edge AI. However, Deploying NN on resource-constrained
edge devices presents a myriad of challenges:
1) The inherent complexity of neural network architectures, which requires significant
computational and memory capabilities.
2) The limited power budget of IoT devices makes the NN inference prone to rapid energy
depletion, drastically reducing system utility.
3) The hurdle of ensuring harmony between NN and HW designs as they evolve at different
rates.
4) The lack of adaptability to the dynamic runtime environment and the intricacies of input
data.
Hardware-aware Neural Architecture Search (HW-NAS) has recently gained
steam by automating the design of efficient DL models for a variety of various
target hardware platforms.
However, HW-NAS requires excessive computational resources. Thousands of GPU
days are required to evaluate and explore an architecture search space. In this talk I
will present state-of-the-art approaches for HW-NAS that are based on three
components:
a) Surrogate models to predict quickly architecture accuracy and hardware
performances to speed up HW-NAS. The idea is to explore the prospect of
Machine Learning for Machine Learning (ML4ML) by introducing techniques to
estimate NN performances on edge devices using neural architectural features and
ML-based predictors.
b) Efficient multi-objective search algorithm that explores only promising hardware
and software regions of the search space, and
c) New model compression techniques that can be combined with HW-NAS to
reduce the processing and memory complexities such as computation reuse and
dynamic NAS.
EPITA,Paris France
loica.avanthey@epita.fr
Title: Robots Below the Surface: Building the Digital Twin of the Ocean — Sensing, Mapping, and Understanding the Underwater World
I obtained an engineering degree in computer science, electronics and automatics in 2011. Having specialized during my studies on spatial remote sensing and then on close-range remote sensing by drone (UAV), I continued on a PhD in Signal & Images at Télécom ParisTech, 100% funded by the French Government Defense Directorate General of Armaments (DGA) which I defended in 2016 on the theme of high-precision underwater mapping assisted by autonomous robots (UUV & USV). My research area is close-range remote sensing and field robotics. I work in all environments (air, land and sea) with a particular focus on the underwater environment. As a professional diver, I take care of field operations involving robots and their sensors and I co-organize underwater experimentation workshop as part of the French GDR Robotique. I am currently an assistant professor at EPITA where I co-created with Laurent Beaudoin the SEAL team (Sense, Explore, Analyze and Learn) on exploration robotics, which was merged in 2022 with the Image Processing and Pattern Recognition group. I am also co-responsible for the robotics axis of EPITA. https://www.lre.epita.fr/perso/lo%C3%AFca-avanthey/
What lies beneath the surface? Why must we deepen our understanding of the deep blue? This talk explores how robotics is transforming our ability to explore, sense, and map the underwater world. From remotely operated robots to autonomous vehicles and their sensors, from image datasets to ground-truth acquisition, discover the technologies and challenges behind creating digital twins of the ocean.
EPITA,Paris France
laurent.beaudoin@epita.fr
Title: Meet ROS 2: The Backbone of Modern Robotic Systems — Building Smarter and Modular Robots
Holder of a DEA in Imaging in Universe Sciences from the University of Nice Sophia- Antipolice (UNSA), I worked for a few years as a research engineer for a large European Aerospace industrialist. I then continue on a PhD in Signal & Images at Télécom ParisTech, which I defended in 2001 on the theme of spatial remote sensing. My research area is close-range remote sensing and field robotics. I work in all environments (air, land and sea) with a particular focus on the underwater environment. As a professional diver, I take care of field operations involving robots and their sensors and I co-organize underwater experimentation workshop as part of the French GDR Robotique. I am currently an assistant professor at EPITA where I co-created with Loïca Avanthey the SEAL team (Sense, Explore, Analyze and Learn) on exploration robotics, which was merged in 2022 with the Image Processing and Pattern Recognition group. I am also co-responsible for the robotics axis of EPITA. https://www.lre.epita.fr/perso/laurent-beaudoin/
ROS 2 (Robot Operating System 2) is at the core of many modern robotic systems. This talk offers an overview of what ROS 2 is, why it matters, and how it enables smarter, modular, and scalable robotic architectures. We'll explore its key features, ecosystem, and tools.
Lumière Lyon 2 University
Title: Analyse prédictive explicable des variables différentielles : Suivie des patients souffrant de troubles du sommeil / Explainable Predictive Analysis of Differential Variables: Monitoring Patients with Sleep Disorders
Dr. Juba Agoun est un jeune maître de conférences en science des données à l'Université Lumière Lyon 2 et membre du laboratoire ERIC – équipe Système d’information décisionnelle (SID). Aujourd’hui, ses travaux se concentrent sur l’intégration et la gestion des données pour leur analyse et exploitation, en mettant l’accent sur la qualité, la sécurité et l’interopérabilité des systèmes intelligents.
Les troubles du sommeil ont un impact majeur sur la santé et la qualité de vie des patients, mais leur diagnostic reste complexe en raison de la diversité des symptômes. Aujourd’hui, les avancées technologiques, combinées à l’analyse des données médicales, ouvrent de nouvelles perspectives pour une meilleure compréhension de ces troubles. En particulier, l’intelligence artificielle explicable (XAI) vise à rendre les décisions des modèles d’IA compréhensibles et interprétables par les utilisateurs. Dans ce talk, nous présenter notre approche qui se base sur le clustering afin de regrouper les patients selon différents profils de troubles du sommeil tout en intégrant une approche explicable. Nous identifions les facteurs clés influençant ces pathologies. Nous discuterons le protocole d’expérimentation sur des données réelles anonymisées qui illustre l’efficacité et la pertinence de notre approche.
15,000 DA
10,000 DA
150€
20,000 DA
University of Guelma
Pr. SEBBAGH Abdennour | University of Guelma | Algeria |
Dr. BOUALLEG Abdelhalim | University of Guelma | Algeria |
Mr. MADI Belgacem | University of Guelma | Algeria |
Ms. KHALFAOUI Amina | University of Guelma | Algeria |
Mr. ADJAL Akram | University of Guelma | Algeria |
Mr. ZENTAR Mohamed Dhia El Hak | University of Guelma | Algeria |
Ms. HAMOUCHI Hala | University of Guelma | Algeria |
Mr. DJEBLI Mohamed Amdjed | University of Guelma | Algeria |
Ms. TABA Zahra | University of Guelma | Algeria |
Pr. ELLAGOUNE Salah
Rector of Guelma University
Pr. KRIBES Nabil
Dean of the Faculty of Science and Technology
Pr. BENCHEREIT Chemesse Ennehar
Pr. HADID Abdennour
Dr. MEDDOURI Nida
Pr. KECHIDA Sihem | University of Guelma | Algeria |
Pr. TEBBIKH Hicham | University of Guelma | Algeria |
Pr. BOULOUH Messaoud | University of Guelma | Algeria |
Pr. ZIOU Djemel | University Sherbrooke | Canada |
Pr. SEKER Serhat | University of Istanbul | Turkey |
Pr. CETIN AKINCI Tahir | University of California | USA |
Dr. SAHLI Nabil | Sonatrach Company | Algeria |
Dr. ZIGHEM Mohammed-En-Nadhir | Huawei's Finland R&D Centre | Finland |
Pr. TALEB Ahmed Abdelmalik | Polytechnic University of Hauts de France | France |
Pr. LAGNA Mohand | University of Blida | Algeria |
Pr. KELAIA Ridha | University of Skikda | Algeria |
Dr. BRAHIMI Mohammed | ENSIA, Algiers | Algeria |
Dr. BELKACEM Sami | ENSIA, Algiers | Algeria |
Dr. MEDDOURI Nida | EPITA, Paris | France |
Pr. James Whidborne | Centre for Aeronautics at Cranfield University | United Kingdom |
Dr. SOUANEF Toufik | Centre for Aeronautics at Cranfield University | United Kingdom |
Dr. CLÉMENT Iphar | University of Western Brittany | France |
Dr. LEBORGNE Aurélie | University of Strasbourg | France |
Dr. SALMON Loïc | University of New Caledonia | France |
Dr. SALMAOUI Nazha | University of New Caledonia | France |
Pr. NIAR Smail | INSA, Polytechnic University of Hauts-de-France | France |
Pr. LOUDNI Samir | IMT Atlantique | France |
Dr. DEHAK Reda | EPITA, Paris | France |
Dr. MHAMDI Faouzi | University of Béja | Tunisia |
Pr. CHAKOUR Chouaib | University of Skikda | Algeria |
Dr. BOUBIDI Assia | University of Guelma | Algeria |
Dr. BENZELTOUT Boubaker | University of Guelma | Algeria |
Dr. MENASRIA Azzeddine | University of Guelma | Algeria |
Dr. LOUCIF Fatiha | University of Guelma | Algeria |
Pr. MENDACI Sofiane | University of Guelma | Algeria |
Dr. TABA Mohamed Tahar | University of Guelma | Algeria |
Dr. BOUALLEG Abdelhalim | University of Guelma | Algeria |
Dr. FISLI Soufiane | University of Blida | Algeria |
Dr. BELLOULA Abdelmalek | Military Polytechnic School | Algeria |
+213 (0) 37 11 60 54